header graphic bar

Charts/graphs reference typical magnet performance. Further reading about Neodymium Iron Boron

Grade
(click to view
demagnetization
curve)
Max Energy
Product
Residual
Induction
Min Intrinsic
Coercivity
Coercivity
Max Operating
Temp
Curie Temp
Coefficient
Induction
20-150 °C
Coefficient
Coercivity
20-150 °C
BHmax Br Hci Hc Tmax Tc α β
 MGOe  kG  kOe  kOe  °C  °C  % / °C  % / °C
N5211 52  14.5  11 10.6 50
 310 -0.12
-0.65
N5011 50  14.3  11 10.6 50
 310 -0.12
-0.63
N4811 48
 13.9  11 10.6 50  310  -0.12 -0.63
N4511 45  13.6  11 10.5 50  310  -0.12 -0.63
N4812 48  14.0  12 11.4 80
 310  -0.12 -0.63
N4512 45
 13.5  12 11.3 80  310  -0.12 -0.63
N4212 42  13.5  12 11.2 80  310  -0.12 -0.63
N4012 40  12.8  12 11.1 80  310  -0.12 -0.63
N3812 38  12.4  12 10.9
80  310  -0.12 -0.63
N3512 35  12.0  12 10.8 80  310  -0.12 -0.63
N5014 50  14.2  14 12.6 80  310  -0.12 -0.63
N4814 48  13.9  14 12.4 80  310  -0.12  -0.63
N4514 45  13.6  14 12.3 80  310  -0.12  -0.63
N4214 42  13.1  14 12.1 80  310  -0.12  -0.63
N4014 40  12.8  14 11.8 80  310  -0.12  -0.63
N3814 38  12.4  14 11.5 80  310  -0.12  -0.63
N3514 35  12.6  14 11.3 80  310  -0.12  -0.63
N3314 33  11.6  14 10.9 80  310  -0.12  -0.63
N4816 48  13.8  16 12.9 100  320  -0.11  -0.61
N4516 45  13.7  16 12.8 100  320  -0.11  -0.61
N4216 42  13.1  16 12.4 100  320  -0.11  -0.61
N3616 36  12.2  16 11.6 100  320  -0.11  -0.61
N3216 32  11.4  16 10.9 100  320  -0.11  -0.61
N4517 45  13.4  17 12.7 120  320  -0.11 -0.60
N4217 42  13.0  17 12.4 120  320  -0.11  -0.60
N4017 40  12.8  17 12.3 120  320  -0.11  -0.60
N3817 38  12.4  17 11.9 120  320  -0.11  -0.60
N3517 35  12.0  17 11.5 120  320  -0.11  -0.60
N3317  33  11.6  17  11.2  120  320  -0.11  -0.60
N3017  30  11.0  17  10.6  120  320  -0.11  -0.60
N4220  42  13.0  20  12.5  150  330  -0.11 -0.58
N4020  40  12.8  20  12.4  150  330  -0.11  -0.58
N3820  38  12.4  20  12.0  150  330  -0.11  -0.58
N3520  35  12.0  20  11.6  150  330  -0.11  -0.58
N3320  33  11.6  20  11.3  150  330  -0.11  -0.58
N3020  30  11.1  20  10.8  150  330  -0.11  -0.58
N4221  42  13.0  21  12.5  150 330  -0.11 -0.55
N4021  40  12.8  21  12.4  150  330  -0.11  -0.55
N3821  38  12.6  21  12.3  150  330  -0.11  -0.55
N3521  35  11.9  21  11.5  150  330  -0.11  -0.55
N3021  30  11.1  21  10.8  150  330  -0.11  -0.55
N3825  38  12.5  25  12.2  180 340
-0.10
 -0.55
N3525  35  12.0  25  11.6  180  340  -0.10  -0.55
N3325  33  11.6  25  11.3  180  340  -0.10  -0.55
N3025  30  11.1  25  10.8  180  340  -0.10  -0.55
N2825  28  10.6  25  10.4  180  340  -0.10  -0.55
N3830  38  12.5  30  12.2 200
360
-0.08 -0.55
N3530  35  12.0  30  11.7  200  360 -0.08  -0.55
N3330  33  11.6  30  11.4  200  360 -0.08  -0.55
N3030  30  11.0  30  10.7  200  360 -0.08  -0.55
N2830  28  10.7  30  10.5  200  360 -0.08  -0.55

 

Typical Physical Properties 
Curie Temperature  320 - 380°C
*Coefficient of Thermal Expansion - Perpendicular to magnetization orientation  -1.0 - -3.0 x 10-6 °C-1
*Coefficient of Thermal Expansion - Parallel to magnetization orientation  +5.0 - +8.0 x 10-6 °C-1
 Electrical Resistivity  120 - 160 µΩ·cm
 Density  7.4 - 7.8 g·cm-3
 Vicker's Hardness  550 - 650 HV
 Young's Modulus  150 - 170 kN·mm-2
 Bending Strength  0.18 - 0.29 kN·mm-2
 Compressive Strength  0.8 - 1.0 kN·mm-2

*Due to magnetostriction, all magnetic materials expand/contract at different rates, depending on magnetic orientation.

About Neodymium Iron Boron

Dexter uses only licensed neodymium and licensed magnet materials for all applications.

Sintered neodymium-iron-boron (Nd-Fe-B) magnets are licensed rare earth magnets which are the most powerful commercialized permanent magnets available today, with maximum energy product ranging from 26 MGOe to 52 MGOe. Neodymium Iron Boron is the third generation of permanent magnet developed in the 1980s. It has a combination of very high remanence and coercivity and comes with a wide range of grades, sizes and shapes. With its excellent magnetic characteristics Nd-Fe-B offers  flexibility for new designs or as a replacement for traditional magnet materials such as ceramic, Alnico and Sm-Co for achieving higher efficiency and more compact devices.

A powder metallurgy process is used in producing sintered Neodymium magnets. Although sintered Neodymium is mechanically stronger than Samarium Cobalt magnets and less brittle than other magnets, it should not be used as a structural component. Selection of Nd-Fe-B is limited by temperature due to its irreversible loss and moderately high reversible temperature coefficient of Br and Hci. The maximum application temperature is 200 °C for high coercivity grades. Nd-Fe-B magnets are more prone to oxidation than any other magnet alloys. If Nd-Fe-B magnet is to be exposed to humidity, chemically aggressive media such as acids, alkaline solutions salts and harmful gases, coating is recommended. It is not recommended in a hydrogen atmosphere.